Implementing MPI-IO Atomic Mode and Shared File Pointers Using MPI One-Sided Communication

نویسندگان

  • Robert Latham
  • Robert B. Ross
  • Rajeev Thakur
چکیده

The ROMIO implementation of the MPI-IO standard provides a portable infrastructure for use on top of a variety of underlying storage targets. These targets vary widely in their capabilities, and in some cases additional effort is needed within ROMIO to support all MPI-IO semantics. Two aspects of the interface that can be problematic to implement are MPI-IO atomic mode and the shared file pointer access routines. Atomic mode requires enforcing strict consistency semantics, and shared file pointer routines require communication and coordination in order to atomically update a shared resource. For some file systems, native locks may be used to implement these features, but not all file systems have lock support. In this work, we describe algorithms for implementing efficient mutex locks using MPI-1 and the one-sided capabilities from MPI-2. We then show how these algorithms may be used to implement both MPI-IO atomic mode and shared file pointer methods for ROMIO without requiring any features from the underlying file system. We show that these algorithms can outperform traditional file system lock approaches. Because of the portable nature of these algorithms, they are likely useful in a variety of situations where distributed locking or coordination is needed in the MPI-2 environment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implementing MPI-IO Shared File Pointers Without File System Support

The ROMIO implementation of the MPI-IO standard provides a portable infrastructure for use on top of any number of different underlying storage targets. These targets vary widely in their capabilities, and in some cases additional effort is needed within ROMIO to support all MPI-IO semantics. The MPI-2 standard defines a class of file access routines that use a shared file pointer. These routin...

متن کامل

Implementing Byte-Range Locks Using MPI One-Sided Communication

We present an algorithm for implementing byte-range locks using MPI passive-target one-sided communication. This algorithm is useful in any scenario in which multiple processes of a parallel program need to acquire exclusive access to a range of bytes. One application of this algorithm is for implementing MPI-IO’s atomic-access mode in the absence of atomicity guarantees from the underlying fil...

متن کامل

Portable and Scalable MPI Shared File Pointers

While the I/O functions described in the MPI standard included shared file pointer support from the beginning, the performance and portability of these functions have been subpar at best. ROMIO [1], which provides the MPI-IO functionality for most MPI libraries, to this day uses a separate file to manage the shared file pointer. This file provides the shared location that holds the current valu...

متن کامل

Implementing OpenSHMEM Using MPI-3 One-Sided Communication

This paper reports the design and implementation of OpenSHMEM over MPI using new one-sided communication features in MPI3, which include not only new functions (e.g. remote atomics) but also a new memory model that is consistent with that of SHMEM. We use a new, non-collective MPI communicator creation routine to allow SHMEM collectives to use their MPI counterparts. Finally, we leverage MPI sh...

متن کامل

The Design and Implementation of a MPI-Based Parallel File System

This paper presents the design of an MPI (Message Passing Interface)-based parallel file system, MPFS. MPI-IO is an extension of MPI which supports flexible logical file partition and physical file organization as well as a rich set of file access functions. MPFS enables users to specify both logical file partitions among user processes and physical file data layouts across data servers. The pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IJHPCA

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2007